とくてい のうやく せんたくてき きゅうちゃく じゅし

3特定の農薬を選択的に吸着する固相吸着材(樹

・特定の農薬を吸着する樹脂カラム

かがく ぶんせき しゅほう 化学分析手法(GC-MSなど)の改良

・シンクロトロン光による極微量の化学物質の検査

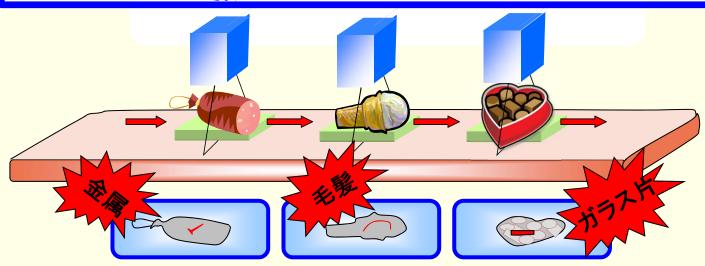
<注釈>

- ・GC-MS(ガスクロマトグラフィ)・・ 気体を成分ごとに分離してそれぞれの質量 を計測する装置
- ・シンクロトロン光 高速で移動する電子を磁石で曲げる時に発生 する電磁波(強力な各種X線を発生)

試料溶液

固相吸着材

かいはつ ないよう


7. グループ2の開発内容

目標:食品中の0. 1mm程度の小さな因形異物を発見げんざい 「現在、1mm程度の金属類の検査が可能、毛髪、樹脂はつけんとなった。」はつけんといぶった。はつけんといるのではつけんという。

食品加工ラインにおける検査装置開発

・磁気センサー(SQUID) ・MRI ・超音波 ・赤外線

・テラヘルツ波

出所:豊橋技科大

田中研究室

かいはつ

一つの検査方法だけでは、すべての異物を探すことが 出来ないので、いろいろな技術を開発する

- ①超高感度磁気センサー(SQUID)を利用した磁性異物 検査装置の開発
 - ·0.1mm以下の磁性金属発見

りよう かいはつ ちょうおんぱ いぶつ 2 超音波を利用した異物検査装置の開発

・周波数の高い音波(メガヘルツ:MHz程度

・0.1mm程度の異物を発見できる

超高感度磁気センサー (SQUID)

液体窒素

<注釈>

- ·SQUID:超伝導磁束量子干渉計
- •超音波:耳に聞こえる音(20~20kHz)より周波数の大きい音波

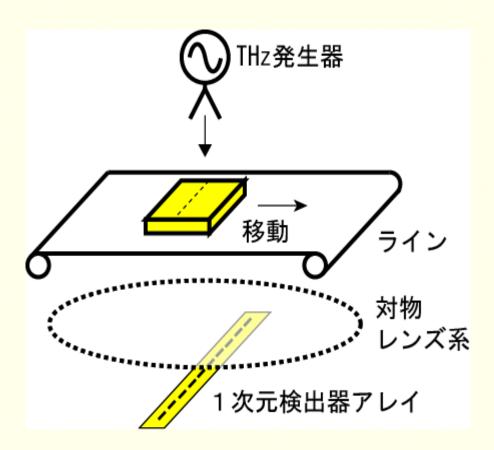
でんぱ でんじ は ひかり ねっせん りよう いぶつ けんさ そうち

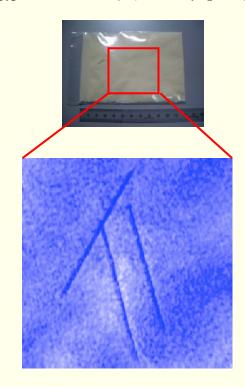

漁線や電波)を利用した異物検査

せきがいせん ねっせん りよう けんさ

- ルニラ め み ひかり はちょう なが 根光(目に見える光)より波長が長い
- ・目には見えない

さが いぶつ のうりょく ・食品を透過し、異物を探す能力がある


じつえん


2)テラヘルツ波(THz)を利用した検査装置

- ・赤外線より波長が100倍以上長い電波
- ・赤外線より透過能力が高い

テラヘルツ波イメージング装置

じっけんれい 「実験例」 こな い はり けんさ 粉ミルクに入れた針の検査

Ariyoshi et al., Appl. Phys. Lett. 88, 203503 (2006)

かいはつ ないよう

8. グループ3の開発内容

もくひょう しょくひんちゅう しょく ちゅうどくきん たん じかん けんさ どうてい きんしゅ

目標: 食品中の食中毒菌を短時間で検査、 同定(菌種を

み わ げんざい ばいよう じかん なが

見分ける)(現在、培養時間が長く2-3日かかる)

しょくちゅうどく かんせん ぶんるい

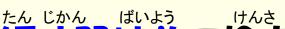
- 1)食中毒感染の分類
 - きん かんせんがた ちゅうどく
- 1 菌感染型中毒

きん かねつ ふじゅうぶん はっせい

- ・サルモネラ菌・・・・加熱不十分で発生
- ・腸炎ビスリオ菌・・・海水細菌、近海魚介類
- ・カンピロバクター菌・・・鶏肉に多い

ちょうかんしゅっけつせいだいちょうきん

- ・腸管出血性大腸菌:0-157
- ・セレウス菌:チャーハン、スパゲッティでも発生する
- ・ボツリヌス菌:猛毒(からしレンコン中毒等)
- ・黄色7トウ球菌:調理後早く食べること


2)食中毒菌はどこにいるか? 家畜、土壌に多い

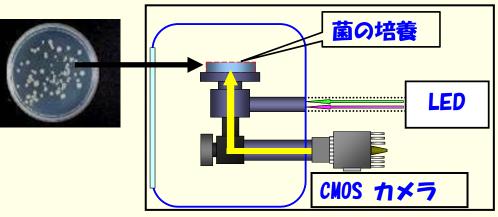
	やさい	こくるい 宗シ 類	にく けいらん にゅう 内、鶏卵、乳 せいひん 製品	かいさんぶつ海産物
だいちょうきん 大腸菌	•		•	•
ちょうかんしゅっけつせいだい 腸管出血性大 ちょうきん どくそ 腸菌(毒素) 0-157など				
サルモネラ菌				
ちょうえん 腸炎ビスリオ菌				
セレウス菌 どじょう どくそ (土壌、毒素)			にゅうせいひん ●(乳製品)	開発レプリオ (A) (基本) (基本) (基本) (基本) (基本) (基本) (基本) (基本
ボツリヌス菌 (土壌、毒素)	ふく くだもの ●(含む果物)			20

かいはつ

かいはつ

菌

- 2)培養状況を光で検査

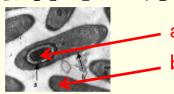

LEDとCMOSカメラ

- 酸化還元試薬
- 3)抗体等

しけん そうち

コロニー

・大腸菌の仲間である0-157も見分けられる技術


·MALDI-TOF-MS装置にデータベースを組み込む

ひかりりよう がほうきんけんさ そうち かいはつ

3光利用による芽胞菌検査装置の開発

・殻の屈折率差を見る位相差顕微鏡とフローセル

を組み合わせて、主に液体中の芽胞菌検出

a.芽胞

b.栄養細胞

<注釈>

- ・芽胞菌 殻(芽胞)を作って冬眠する。殻は熱に強い(120℃まで耐える) 60℃くらいになると冬眠から覚めて活動、毒素で中毒を起こす。

- 4遺伝子(DNA)に着目して食中毒菌を見分ける技術の開発
 - ・菌の遺伝子を調べ、菌種を見分ける技術の改良
- 多その他
 - こうがくてき きんすう けいそく そうち
 - 1)光学的菌数計測装置
 - 1μm程度の菌を一つ一つ数える技術の開発

 - 3)培養時の代謝熱変化計測装置 動が増殖する時には、新陳代謝によりわずかに 熱を発生するので、その変化をセンサで計測する

ご静聴ありがとうございました!

- ●プロジェクトは毎年5月頃に公開セミナーを開催し、研究成果を報告します。財団ホームページを時々ご覧下さい。
- ●この資料は財団P2千一ムで作成しました。 事業統括: 青木美昭

科学技術コーティネーター: 松村憲明

科学技術コーティネーター:中山博導

アシスタント:佐藤緑

経理:服部信子

協力、リサーチグルース:鈴木盟子

付録 お時間があれば見て下さい

参考1 有害化学物質とは?

- ①基準値以上食品に残留する農薬
 - ・農薬は数百種類(殺菌、殺虫、除草など)
- 2重金属
 - ・カドミニウム
 - ·鉛
 - ·水銀
 - ·上素

等、体に悪影響を及ぼす金属

- 3 その他
 - ・環境ホルモン
 - ·大量抗生物質

参考2 食品に混入する固形異物とは?

- 「異物は食品苦情の20%程度を占める」
- 1食品加工機械の部品、かけらなど
 - ・金属(ビス、ナット、機械の欠け)
 - ・シール材(ゴムなど)
 - ・プラスチック(ブラシの毛、コンテナ欠け)
- 2環境物質
 - ・虫:ゴキブリが多い
 - ・ガラス(蛍光灯など)
 - ·石、砂
- 3人体が発生源
 - ·毛髮

参考3 食中毒菌の大きさは?

- 1 普通の顕微鏡でそのきま見えるもの
 - ·蟻·····5mm程度
 - ·ダニ···0.5mm程度
 - ·カビ·・・0.05mm程度
- ②普通の顕微鏡では見えないので、培養(増やす)し、 染色して、見えるようにする。
 - ·酵母···1/100mm程度(10µm程度)
 - ·菌···1/1000mm程度(1µm程度)

形:球形、棒状など

3 普通の顕微鏡では見えない。電子顕微鏡が必要・ウイルス・・・0.1 μm~0.01 μ m程度 食中毒の原因になる/ロウイルスなど